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Abstract. Nowadays, autonomous cars can drive smoothly in ordinary
cases, and it is widely recognized that realistic sensor simulation will
play a critical role in solving remaining corner cases by simulating them.
To this end, we propose an autonomous driving simulator based upon
neural radiance fields (NeRFs). Compared with existing works, ours
has three notable features: (1) Instance-aware. Our simulator mod-
els the foreground instances and background environments separately
with independent networks so that the static (e.g., size and appearance)
and dynamic (e.g., trajectory) properties of instances can be controlled
separately. (2) Modular. Our simulator allows flexible switching be-
tween different modern NeRF-related backbones, sampling strategies,
input modalities, etc. We expect this modular design to boost academic
progress and industrial deployment of NeRF-based autonomous driving
simulation. (3) Realistic. Our simulator set new state-of-the-art photo-
realism results given the best module selection. Our simulator will be
open-sourced while most of our counterparts are not. Project page:
https://open-air-sun.github.io/mars/.
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1 Introduction

Autonomous driving [11,13,33,16,24,14] is arguably the most important applica-
tion of modern 3D scene understanding [5,25] techniques. Nowadays, Robotaxis
can run in big cities with up-to-date HD maps, handling everyday driving sce-
narios smoothly. However, once a corner case that lies out of the distribution of
an autonomous driving algorithm happens on the road unexpectedly, the lives
of passengers are put at risk. The dilemma is that while we need more training
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data about corner cases, collecting them in the real world usually means dan-
ger and high expenses. To this end, the community believes that photorealistic
simulation [17,6,29,10] is a technical path of great potential. If an algorithm can
experience enormous corner cases in a simulator with a small sim-to-real gap,
the performance bottleneck of current autonomous driving algorithms can be
potentially addressed.

Existing autonomous driving simulation methods have their own limitations.
CARLA [8] is a widely used sensor simulator based upon traditional graphics
engines, whose realism is restricted by asset modeling and rendering qualities.
AADS [17] also exploits traditional graphics engines but demonstrates impressive
photorealism using well-curated assets. On the other hand, GeoSim [6] introduces
a data-driven scheme for realistic simulation by learning an image enhancement
network. Flexible asset generation and rendering can be achieved through image
composition with promisingly good geometry and realistic appearance.

In this paper, we take advantage of the realistic rendering ability of NeRFs
for autonomous driving simulation. Training data captured from real-world en-
vironments guarantees a small sim-to-real gap. Several works also exploit NeRFs
to model cars [20] and static backgrounds [10] in outdoor environments. How-
ever, the inability to model complex dynamic scenes that are composed of both
moving objects and static environments limits their practical use for real-world
sensor simulation. Recently, Neural Scene Graph (NSG) [21] decomposes dy-
namic scenes into learned scene graphs and learns latent representations for
category-level objects. However, its multi-plane-based representation for back-
ground modeling cannot synthesize images under large viewpoint changes.

To be specific, our central contribution is the very first open-source NeRF-
based modular framework for photorealistic autonomous driving simulation. The
proposed pipeline models foreground instances and background environments
in a decomposed fashion. Different NeRF backbone architectures and sampling
methods are incorporated in a unified manner with multi-modal inputs sup-
ported. The best module combination of the proposed framework achieves state-
of-the-art rendering performance on public benchmarks with large margins, in-
dicating photorealistic simulation results.

2 Method

Overview. As illustrated in Fig. 1, we aim to provide a modular framework for
constructing compositional neural radiance fields, where realistic sensor simula-
tion can be conducted for outdoor driving scenes. A large unbounded outdoor
environment with plenty of dynamic objects is taken into consideration.

The input to the system consists of a set of RGB-images {Ii}N (captured by
vehicle-side or roadside sensors), sensor poses {Ti}N (calculated using IMU/GPS
signals), and object tracklets (including 3D bounding boxes {Bij}N×M , cate-
gories {typeij}N×M , and instance IDs {idxij}N×M ). N is the number of input

frames and M is the number of tracked instances {Oj}M across the whole se-
quence. An optional set of depth maps {Di}N and semantic segmentation masks
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Fig. 1. Pipeline. Left: We first calculate the ray-box intersection of the queried ray
r and all visible instance bounding boxes {Bij}. For the background node, we directly
use the selected scene representation model and the chosen sampler to infer point-
wise properties, as in conventional NeRFs. For the foreground nodes, the ray is first
transformed into the instance frame as ro before being processed through foreground
node representations (Sec. 2.1). Right: All the samples are composed and rendered
into RGB images, depth maps, and semantics (Sec. 2.2).

{Si}N can also be adopted as extra supervision signals during training. By con-
structing a compositional neural field, the proposed framework can simulate
realistic sensor perception signals (including RGB images, depth maps, seman-
tic segmentation masks, etc.) at given sensor poses. Instance editing on object
trajectories and appearances is also supported.

Pipeline. Our framework model each foreground instance and the background
node compositionally. As shown in Fig. 1, when querying properties (RGB,
depth, semantics, etc.) of a given ray r, we first calculate its intersection with
all visible objects’ 3D bounding boxes to get the entering and leaving distances
[tin, tout]. Afterward, both the background node (Fig. 1 left-top) and the fore-
ground object nodes (Fig. 1 left-bottom) are queried, where each node samples
a set of 3D points and uses its specific neural representation network to obtain
point properties (RGB, density, semantics, etc.). Specifically, to query foreground
nodes, we convert the ray origins and directions from world space into instance
frames according to the object tracklets. Finally, all the ray samples from back-
ground and foreground nodes are composed and volume-rendered to produce
pixel-wise rendering results (Fig. 1 right, Sec. 2.2).

We observe that the nature of background nodes (typically unbounded large-
scale scenes) differs from the object-centric foreground nodes, while current
works [15,21] in sensor simulation use unified NeRF models. Our framework
provides a flexible and open-sourced framework that supports different design
choices of scene representations for background and foreground nodes and can
easily incorporate new state-of-the-art methods of static scene reconstruction
and object-centric reconstructions.
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2.1 Scene Representation

We decompose the scene into a large-scale unbounded NeRF (as the background
node) and multiple object-centric NeRFs (as independent foreground nodes).
Conventionally, a neural radiance field maps a given 3D point coordinate x =
(x, y, z),x ∈ R3 and a 2D viewing direction d ∈ S2 to its radiance c and volume
density σ shown in Eq. 1. Based upon this seminal representation, many variants
have been proposed for different purposes, so we take a modular design.

f(x,d) = (c, σ) : [R3,S2] → [R3,R+] (1)

The challenge of modeling unbounded background scene photo-realistically lies in
accurately representing far regions, so we utilize the unbounded scene warping [2]
to contract the far region. For foreground nodes, we support both the code-
conditioned representation f(x,d, z) = (c, σ) (z ∈ Rk denotes the instance-wise
latent code) and the conventional ones, which will be explained as follows.

Architectures. In our modular framework, we support various NeRF back-
bones, which can be roughly categorized into two hyper-classes: MLP-based
methods [18,1,2], or grid-based methods that store spatially-variant features in
their hash grid voxel vertices [19,23]. Although these architectures differ from
each other in details, they follow the same high-level formulation of Eq. 1 and
are capsuled in modules under a unified interface in MARS.

While the MLP-based representations are simple in mathematical form, we
give a formal exposition of grid-based methods. The specific implementation of
a multi-resolution feature grid {Gl

θ}Ll=1 has layer-wise resolutions Rl := ⌊Rmin ·

bl⌋, b = exp

(
lnRmax − lnRmin

L− 1

)
, where Rmin , Rmax are the coarsest and the

finest resolution [31,19]. The coordinates x are first scaled to each resolution
before being processed by the ceiling and flooring operations to ⌈x ·Rl⌉, ⌊x ·Rl⌋
and hashed to obtain table indexes [19]. The extracted feature vectors are then
tri-linearly interpolated and decoded through a shallow MLP.

(c, σ) = fθ
(
interp(hash and lookup(x, {Gl

θ}Ll=1)),d
)
. (2)

Sampling. We support various sampling strategies, including the recently pro-
posed proposal network [2], which distills a density field from a radiance-free
NeRF model to generate ray samples and other sampling schemes like coarse-
to-fine sampling [18] or uniform sampling [9] for flexibility.

Foreground Nodes. For rendering foreground instances, we first transform
the projected rays into per-instance coordinate space and then infer the object-
centric NeRFs in each instance-wise canonical space. The default setting of our
framework uses code-conditioned models that exploit latent codes to encode
instance features and shared category-level decoders to encode class-wise pri-
ors, allowing the modeling of many long tracklets with compact memory usage.
Meanwhile, the conventional ones without code conditions are also supported in
our framework. We detailed our modified foreground representation (denoted as
‘Ours’ in Sec. 3) in supplementary materials.
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Fig. 2. Illustration on the compositional rendering. Some of the static vehicles in the
far region are considered as background objects.

2.2 Compositional Rendering

Figure 2 demonstrates the compositional rendering results. To render an image
at a given camera pose Ti, we cast a ray r = o+ td at each rendered pixel. For
each ray r, we first calculate the intersection interval [tin, tout] with all visible

foreground nodes Oij (Fig. 3) and transform the samples {P obj-j
k } along the ray

from world space into each foreground canonical space. We also sample a set
of 3D points along the ray ({P bg

k } as background samples. Samples in all nodes
are first passed through their corresponding networks to obtain point-wise colors
{cbg, objk }, densities {σbg, obj

k }, and foreground semantic logits {sbgk }. Considering
that the semantic properties of foreground samples are actually their category
label, we create a one-hot vector as:

sobj-jk [l] =

{
σobj-j
k if l = category of j’s instance
0 otherwise

, for l in category. (3)

To aggregate the point-wise properties, we sort all the samples by their ray
distance in world space and use the standard volume rendering process to render
pixel-wise properties:

ĉ(r) =
∑
Pi

Tiαici + (1− accum) · csky, Ti = exp(−
i−1∑
k=1

σkδk), (4)

d̂(r)=
∑
Pi

Tiαiti + (1− accum) · inf, ŝ(r)=
∑
Pi

Tiαisi + (1− accum) · ssky, (5)

where Pi ∈ sorted({P bg, obj
i }), αi = 1 − exp(−σiδi), δi = ti+1 − ti, accum =∑

Pi
Tiαi , csky is the rendered color from the Sky model (Sec.2.3), inf is the

upper bound distance, and ssky is the one-hot semantic logits of the sky category.

2.3 Towards Realistic Rendering

Sky Modeling. In our framework, we support the usage of a sky model to deal
with appearances at infinite distance, where an MLP-based spherical environ-
ment map [22] is leveraged to model the infinitely far regions that never intersect
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Fig. 3. Visual demonstration on our conflict-free sampling process. We use uniform
sampling in all nodes for illustration.

opaque surfaces:
fsky(d) = csky : S2 → R3 (6)

However, näıvely blending the sky color csky with background and foreground
rendering (Eq. 4) leads to potential inconsistency. Therefore, we introduce a BCE
semantic regularization to alleviate this issue:

Lsky = BCE(1− accum,Ssky). (7)

Resolving Conflict Samples. Due to the fact that our background and fore-
ground sampling are done independently, there is a chance that background
samples fall within the foreground bounding box (Fig. 3 Background Truncated
Samples). The compositional rendering may mistakenly classify foreground sam-
ples as background (referred to later as background-foreground ambiguity). As
a result, after removing the foreground instance, artifacts will emerge in the
background area (Fig. 4). Ideally, with sufficient multi-view supervision signal,
the system can automatically learn to distinguish between foreground and back-
ground during the training process. However, for a data-driven simulator, ob-
taining abundant and high-quality multi-view images is challenging for users as
vehicles move fast on the road. The ambiguity is NOT observed in NSG [21] as
NSG only samples a few points on the ray-plane intersections, and is unlikely to
have much background truncated samples.

Without regularization With 

Fig. 4. We show that the background truncated samples cause background-foreground
ambiguity without our regularization.

To address this issue, we devise a regularization term that minimizes the
density sum of background truncated samples to minimize their influence during
the rendering process as:

Laccum =
∑
P

(tr)
i

σi, (8)

where {P (tr)
i } denotes background truncated samples.
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2.4 Optimization

To optimize our system, we minimize the following objective function:

L = λ1Lcolor + λ2Ldepth + λ3Lsem + λ4Lsky + λ5Laccum, (9)

where λ1−5 are weighting parameters. Lsky and Laccum are explained in Eq. 7
and 8.
Color Loss: we adopt a standard MSE loss that minimizes the photo-metric
errors as:

Lcolor = ||c(r)− ĉ(r)||22. (10)

Depth Loss: We introduce a depth loss to address textureless regions and re-
gions that are observed from sparse viewpoints. We have devised two strategies
for supervising the geometry. Given depth data, we utilize a ray distribution loss
derived from [7]. On the other hand, if the depth data is not available, we utilize
a mono-depth network and apply mono-depth loss following [31].

Ldepth =

{
Lsensor depth if depth data is available
Lmono depth if depth data is not available

(11)

Semantic Losses: we follow SemanticNeRF [34] and use a cross-entropy se-
mantic loss Lsem = CrossEntropy(s(r),S(r)).

3 Experiments

In this section, we provide extensive experimental results to demonstrate the
proposed instance-aware, modular, and realistic simulator for autonomous driv-
ing. We evaluate our method on scenes from the KITTI [11] dataset and the
Virtual KITTI-2 (V-KITTI) [3] dataset. In the following, we use “our default
setting” to denote a grid-based NeRF with proposal sampler for the background
node, and our modified category-level representation with coarse-to-fine sampler
for foreground nodes.

Table 1. Qunatitative results on image reconstruction task & Comparisons on the
settings with baseline methods. The dataset used for evaluation is KITTI.

NeRF [18] NeRF+Time NSG [21] PNF [15] SUDS [26] Ours

PSNR ↑ 23.34 24.18 26.66 27.48 28.31 29.06
SSIM ↑ 0.662 0.677 0.806 0.870 0.876 0.885

Instance-aware × × ✓ ✓ × ✓
Modular × × × × × ✓

Open-sourced ✓ - ✓ × ✓ ✓

3.1 Photorealistic Rendering

We validate the photorealistic rendering performance of our simulator by evalu-
ating image reconstruction and novel view synthesis (NVS) following [21,26].
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Table 2. Qunatitative results on novel view synthesis

KITTI-75% KITTI-50% KITTI-25%
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NeRF [18] 18.56 0.557 0.554 19.12 0.587 0.497 18.61 0.570 0.510
NeRF+Time 21.01 0.612 0.492 21.34 0.635 0.448 19.55 0.586 0.505
NSG [21] 21.53 0.673 0.254 21.26 0.659 0.266 20.00 0.632 0.281
SUDS [26] 22.77 0.797 0.171 23.12 0.821 0.135 20.76 0.747 0.198
Ours 24.23 0.845 0.160 24.00 0.801 0.164 23.23 0.756 0.177

+1.46 +0.048 -0.011 +0.88 -0.020 +0.029 +2.47 +0.009 -0.021

VKITTI-75% VKITTI-50% VKITTI-25%
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NeRF [18] 18.67 0.548 0.634 18.58 0.544 0.635 18.17 0.537 0.644
NeRF+Time 19.03 0.574 0.587 18.90 0.565 0.610 18.04 0.545 0.626
NSG [21] 23.41 0.689 0.317 23.23 0.679 0.325 21.29 0.666 0.317
SUDS [26] 23.87 0.846 0.150 23.78 0.851 0.142 22.18 0.829 0.160
Ours 29.79 0.917 0.088 29.63 0.916 0.087 27.01 0.887 0.104

+5.92 +0.071 -0.062 +5.85 +0.065 -0.055 +4.83 +0.058 -0.056

Baselines. We conduct qualitative and quantitative comparisons against other
state-of-the-art methods: NeRF [18], NeRF with timestamp input (denoted as
NeRF+Time), NSG [21], PNF [15], and SUDS [26]. Note that none of them
simultaneously meet all three standards mentioned in Table. 1.

Implementation Details. Our model is trained for 200,000 iterations with
4096 rays per batch, using RAdam as optimizers. The learning rate of the back-
ground node is assigned 1 ∗ 10−3 decaying to 1 ∗ 10−5, while that of 5 ∗ 10−3

decaying to 1 ∗ 10−5 in object nodes.

GT NeRF NeRF+Time

NSG SUDS Ours default

Fig. 5. Qualitative image reconstruction results on KITTI dataset.

Experiment Settings. The training and testing image sets in the image recon-
struction setting are identical, while in the NVS task, we render the frames that
are not included in the training data. Specifically, we hold out every 4th frames,
every 2nd and 4th frames, and training with only one in every four frames, namely
25%, 50%, and 75%.

We follow the standard evaluation protocol in image synthesis and report
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM), and Learned
Perceptual Image Patch Similarity (LPIPS) [32] of our default setting for quan-
titative evaluations. Results are shown in Table 1 for image reconstruction and
Table 2 for NVS, which indicate that our method outperforms baseline methods
in both settings. We can achieve 29.79 PSNR on V-KITTI using 75% training
data, while the best result previously published is 23.87.
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3.2 Instance-wise Editing

Our framework separately models background and foreground nodes, which al-
lows us to edit the scene in an instance-aware manner. We qualitatively present
our capability to remove instances, add new instances, and edit vehicle trajec-
tories. In Fig. 7, we show some editing examples of rotating and translating a
vehicle, though more results can be found in our video clip.

K
IT

TI
V

-K
IT

TI

Original            Rotated            Translated

Fig. 7. Rendering results on the edited scene.

3.3 The blessing of moduler design

We use different combinations of background and foreground nodes, samplers,
and supervision signals for evaluation, which is credited to our modular design.

Note that some of the baseline methods in the literature actually corre-
spond to an ablation entry in this table. For instance, PNF [15] uses NeRF
as background node representation and instance-wise NeRF as foreground node
representation with semantic losses. NSG [21] uses NeRF as background node
representation and category-level NeRF as foreground representation, but with
a multi-plane sampling strategy. Our default setting uses grid-based background
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node representation, and our proposed category-level method for foreground
node representation.

3.4 Ablation Results

In this section, we analyze different experiment settings, verifying the necessity of
our design. We reveal the impact of different design choices in background node
representation, foreground node representation, etc. Specifically, we present all
experiments with 50,000 iterations. Unlike prior works [26,15,21] that evaluate
their method on a short sequence of 90 images, we use the full sequence from
the dataset for all evaluation. Since they are not open-sourced and their exact
evaluation sequences are not known, we hope our new benchmarking would stan-
dardize this important field. Quantitative evaluation can be found in Table 3.

For background and foreground nodes, we substitute our default model (ID 1
in Table 3) with MLP-based and grid-based model and list their metrics in row
2, 7-12. In the 3rd-6th row, we show the effectiveness of our model components.
For model and sampler, selected modules for background and foreground nodes
are noted before and after the slash, respectively.

Table 3. Quantitative evaluation for ablation studies

Settings KITTI V-KITTI
ID

Model Sampler Category Lsky Ldepth Lsem Laccum PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
1* Grid / Ours prop / c2f † 25.04 0.782 0.175 28.37 0.907 0.108
2 MLP / Ours c2f / c2f 20.14 0.589 0.476 22.19 0.664 0.409
3 Grid / Ours prop / c2f × 21.35 0.713 0.242 27.30 0.881 0.130
4 Grid / Ours prop / c2f × × 23.68 0.774 0.181 27.32 0.881 0.129
5 Grid / Ours prop / c2f × 23.66 0.769 0.184 27.30 0.880 0.128
6 Grid / Ours prop / c2f × 20.07 0.723 0.251 27.42 0.863 0.148
7 Grid / MLP prop / c2f 20.46 0.709 0.255 26.46 0.875 0.132
8 Grid / Grid prop / prop 22.23 0.741 0.211 25.22 0.871 0.134
9 Grid / MLP prop / c2f × 20.98 0.699 0.257 27.27 0.881 0.130
10 Grid / Grid prop / prop × 23.71 0.763 0.193 26.65 0.882 0.125

11*MLP / MLP c2f / c2f 20.42 0.592 0.472 21.77 0.659 0.410
† prop stands for proposal sampler, and c2f stands for coarse-to-fine sampler.
* ID 1 is our default setting. ID 11 is similar to the setting of NSG [21] with coarse-to-fine sampler instead.

4 Conclusion

In this paper, we present a modular framework for photorealistic autonomous
driving simulation based on NeRFs. Our open-sourced framework consists of
a background node and multiple foreground nodes, enabling the modeling of
complex dynamic scenes. We demonstrate the effectiveness of our framework
through extensive experiments. The proposed pipeline achieved state-of-the-art
rendering performance on public benchmarks. We also support different design
choices of scene representations and sampling strategies, offering flexibility and
versatility in the simulation process.

Limitations. Our method requires hours to train and is not capable of
rendering in real-time. Besides, our method fails to consider the dynamic specular
effects on glasses or other reflective materials that may cause artifacts in rendered
images. Improving simulation efficiency and view-dependent effects will be our
future work.
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A Related Works

A.1 Neural Simulators

Neural rendering has shown immense potential in representing autonomous driv-
ing scenarios. Some methods have been proposed to leverage this technology
in simulators. Neural scene graph (NSG) [21] decomposes dynamic scenes by
encoding object transformations into a learned scene graph, and learns latent
representation to describe similar objects with the same implicit field. Panoptic
Neural Fields (PNF) [10] went one step further to model instance-aware ob-
jects and jointly learn panoptic segmentation of the scene. Urban radiance field
(URF) [22] leverages predicted image segmentations to supervise densities on
rays pointing at the sky. S-NeRF [28] employs a camera transformation for ob-
ject alignment and integrates reprojection and geometry confidence to enhance
geometric consistency. SUDS [26] factorizes the scene into three separate hash
tables to efficiently encode static, dynamic, and far-field parts of the scene. How-
ever, these methods failed to integrate the foreground and background well and
leverage prior information about vehicles to create realistic scene representa-
tions in autonomous driving scenarios. Furthermore, the highly interconnected
frameworks of these methods have limited their practical implementation in en-
gineering projects.

A.2 Neural Scene Representations

Neural Scene Representation has shown impressive results in image reconstruc-
tion and novel view synthesis. Neural Radiance Field(NeRF)[18] is the first to use
implicit fields to represent scenes, various types of NeRFs have been proposed
for acceleration. [19,23,4] and better rendering quality [1,2,27]. NeRFStudio[23]
provides a unified framework for many of these approaches. However, most of
them fail to reconstruct dynamic scenes with high quality, and there is no such
framework available that offers a flexible module switch to seamlessly combine
the distinct strengths of these approaches.
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B More on the depth supervision

We follow DS-NeRF [7] and utilize a ray distribution loss if the dense depth
maps are available:

Lsensor depth =
∑
k

log hk exp

(
− (tk −D(r))

2σ̂2
i

)
δk, (12)

where σ̂i is the average reprojection error.
If the ground truth dense depth maps are not available, we use the monocular

depth estimation network and employ a mono-depth loss [31] to regularize the
geometry:

Lmono depth =
∑
r

||wd̂(r) + q −D(r)||22, (13)

where w and q are the learnable scale and shift factors that are optimized through
training for scale and shift-invariance.

C Details for foreground nodes
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Fig. 8. Our decoupling shape and texture category-level model.

The overview of our improved foreground nodes is shown in Fig.8. Our ap-
proach learns the shape and texture of each object instance separately by de-
coupling them into two parts of latent codes. We optimize these latent codes
over the test sequence and store them in object libraries. The object library is
depicted in Figure 8.

During rendering, we incorporate the priors that are queried from the object
library into the NeRF model. The shape net is an 8-layer MLP, and the texture
net is a 4-layer MLP following the vanilla NeRF[18]. We combine the latents and
the model by concatenating the positional encoded [18] camera position and the
shape latent codes to model the instance’s shape with the shape networks. The
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output feature is then stacked with the positional encoded viewing directions d
and the texture latents, and passed the resulting input to the texture networks
to obtain the instance’s texture. These improvements contribute to state-of-
the-art performance.

Ground Truth Reconstruct Image Background Node Object Node

Fig. 9. Additional qualitative results demonstrating traffic scene decomposition effec-
tiveness.

D Synthetic traffic environment generation

We present additional experiment results in Fig. 9 of decomposed rendering re-
sults on KITTI[12], VKITTI[3], and DAIR-V2X datasets [30]. Our method offers
the benefits of background and foreground decomposition, which enables flexi-
ble editing of foreground nodes to generate novel synthetic traffic environments.
Figure 10 showcases the editing process, where the car can be deleted and added
to a new position or orientation. These operations are equivalent to translat-
ing or rotating the target objects. These capabilities allow for the creation of
diverse and customizable photorealistic traffic scenarios, which can be valuable
for testing and evaluating autonomous driving systems and other traffic-related
applications.
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Object Translation

Object Rotation

Fig. 10. Our method enables the generation of novel traffic environments by editing
specific objects within a scene. In the first and third rows, the red sedan is edited, while
in the second and fourth rows, the white bus is edited.
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